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In our recent works [1] it was shown that a system H
possessing a Hagedorn-like spectrum [2–5] (C = const)

ρH(m) ≈ C exp (m/TH) , (1)

behaves like a perfect thermostat with the temperature
TH, i.e., it imparts the Hagedorn temperature TH to any
other system to which H is coupled. Such a property of
the microcanonical system leads to the surprising behav-
ior that the Laplace transform to the canonical ensemble

Z (T ) =

∞∫
0

ρH (E) e−
E
T dE = C

THT

TH − T
. (2)

exists for any value of parameter T < TH and diverges
for T = TH. This fact led to the erroneous conclusion
that the microcanonical temperature TH is the limiting
temperature, whereas it it the only temperature of the
microcanonical system. Thus, we are facing the non-
equivalence of the statistical ensembles for the exponen-
tial mass spectrum (1), which was noticed first by R.
Carlitz [6], but was never discussed from the point of
view of standard thermodynamics.

To elucidate the problem let us consider two systems
A and B with level densities ρA and ρB , respectively.
Let the systems be thermally coupled to each other with
total energy E. We now calculate the distribution of this
energy between the two systems,

ρT (x) = ρA(E − x)ρB(x) (3)

Let A be a thermostat, i.e. ρA(ε) = eε/TA . Then

ρT (x) = e(E − x)/TAρB(x) = eE/TAe−x/TAρB(x). (4)

Let us integrate over x for macroscopic values of E∫
ρT (x)dx = eE/TA

∫
e−x/TAρB(x)dx = eE/TAZB(TA),

(5)
which gives rise to the partition function ZB(TA) and the
meaning of “implicit” thermostat. By changing “thermo-
stat” we can change TA and the temperature of B.

Thus, every time we construct a partition function, we
imply the gedanken experiment of connecting the system
to a thermostat, and that this experiment is actually pos-
sible for the system we are studying. Does this always
work?

To see this, let us look for the most probable value
of the distribution ρT (x), which defines the equilibrium
partition, by taking the logarithm and differentiating:

ln ρT (x) = ln ρA(E − x) + ln ρB(x) (6)
∂ ln ρT (x)/∂x = − ∂ ln ρA/∂x|+ ∂ ln ρB/∂x| = 0 ⇔

⇔ 1/TA = 1/TB . (7)

For this to be possible, it is necessary that ρA and ρB

admit the same logarithmic derivative somewhere in the
allowed range of energy x.

Usually, and always for concave functions, S(x) =
ln ρ(x) and T = (∂S/∂x)−1 are such that 0 ≤ T ≤ ∞.
Thus, for such systems it is possible to match derivatives
for whatever value of E. Thermal equilibrium is achiev-
able over a broad range of temperatures.

However, if SA(E) = ln ρA(E) is linear in E, then
TA = (∂S/∂E)−1 is a constant, independent of E. In
this case, it is up to B to look for the value of x at which
its logarithmic derivative matches 1/TA. The system A
is a thermostat at T = TA and the temperature of system
B must assume the value TB = TA, if possible.

Now suppose that also SB(E) = ln ρB(E) is linear in E
with an inverse slope TB . This means that only if TA =
TB is equilibrium possible, and the partition function of
B, ZB is meaningfully defined only for T = TB and not
for 0 ≤ T ≤ TB . A temperature T 6= TB cannot be
forced on a thermostat. It can only have its own intrinsic
temperature TB .

Placing systems A and B into contact will lead to a
continuous heat flow from one system to the other. Ther-
mal equilibrium is not achievable.

Summarizing: it is permissible to calculate a sys-
tem’s partition function only if its S(E) admits as in-
verse derivatives the very values we imposed through the
Laplace transform. Failing that, the resulting partition
function does not satisfy any thermodynamic criterion.
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